II B. TECH I SEMESTER SUPPLEMENTARY EXAMINATIONS, FEB - 2022 PROBABILITY AND STATISTICS

(Common CSE and INF)

Time : 3 Hours

1.

Note : Answer ONE question from each unit (5 × 12 = 60 Marks)

UNIT-I

. 8	a)	From	the	following	data	find	the	mean	profit.

	, c			1			
Profit's per shop(Rs)	100- 200	200- 300	300- 400	400- 500	500- 600	600- 700	700- 800
No. of Shops	10	18	20	26	30	28	18

b) Calculate the coefficient of Quartile deviation.

			e				
C.I	0-15	15-30	30-45	45-60	60-75	75-90	90-105
$f_{ m i}$	8	26	30	45	20	17	4

(OR)

2. a) Calculate the median from the following data.

ourourate tri								
Marks	10-25	25-40	40-55	55-70	70-85	85-100		
Frequency	6	20	44	26	3	1		

b) Calculate the Karl Pearson's coefficient of skewness from the [6M] data.

Size	1	2	3	4	5	6	7
Frequency	10	18	30	25	12	3	2

UNIT-II

3.	a)	Find the co-efficient of correlation from the following data.										[6M]
)	x	1	2	3	4	5	6	7	8	9	Γ-]
		у	12	11	13	15	14	17	16	19	18	

b)	Fit an exp	onential fu	nction forn	n for the fol	llowing dat	a	[6M]
,	x	1	5	7	9	12	[]
	у	10	15	12	15	21	

(OR)

R19

Max. Marks: 60

[6M]

[6M]

[6M]

4. a) Find the most likely production corresponding to a rainfall [6M] 40 from the following data:

	Rain fall(X)	Production(Y)
Average	30	500 Kgs
Standard deviation	5	100 Kgs
Coefficient of correlation	0.8	

b) Determine the constants a and b by the method of least [6M] squares such that $y = ae^{bx}$.

x	2	4	6	8	10				
у	4.077	11.084	30.128	81.897	222.62				

UNIT-III

- 5. a) Two dice are thrown, let X assign to each point ordered pair [6M] (a, b). X assigns the maximum of its numbers, i.e X(a, b) = Max(a, b). Find the probability distribution.
 - b) 1000 students had written an examination. Mean of test is [6M] 35 and standard deviation is 5. Assuming the distribution to be normal find how many students marks (i) Lie between 25 and 40 (ii) More than 40 (iii) Below 20.

(OR)

- 6. a) In a bolt factory machines A, B, C manufacture 20%, 30% 50% [6M] of the total of their outputs. 6%, 3% 2% are defective. A bolt is drawn at random and found to be defective, what is the probability that is manufactured by (i) Machine A (ii) Machine B (iii) Machine C.
 - b) Find the value of standard deviation for the random variable [6M] defined as sum of the face values on throwing of 2 dice simultaneously.

UNIT-IV

- 7. a) A random sample of size 100 is taken from a population with [6M] standard deviation is 5.1. Given that the sample mean is 21.6. Construct confidence interval at the level of significance 95% also find the maximum error at the level of significance 99%.
 - b) The mean height of the students in a college is 155 cm and [6M] standard deviation is 15. What is the probability that mean height of 36 students (i) less than 157 cm (ii) above 150 cm and also find the probable error.

(OR)

8. a) A population consisting of 5 numbers 2, 3, 6, 8, 11Consider all [12M] samples of size '2' which can be drawn with replacement from this population. Find (i) Population mean (ii) Population standard deviation (iii) Mean of sampling distribution of means (iv) Standard deviation of sampling distribution of means (v) Correction factor (vi) Standard error and verify.

UNIT-V

- 9. a) In a large consignment of oranges a random sample of 64 [6M] oranges revealed that 14 oranges were bad. Is it reasonable to ensure that 20% of the oranges are bad?
 - b) The following is the distribution of the hourly number of travels [6M] arriving at company ware house

Trucks arriving / hr	0	1	2	3	4	5	6	7	8
Blue	52	151	130	102	45	12	5	1	2

Verify the arriving rate is true or not by using chi square test.

(OR)

10. a) Two independent samples of 8 and 7 items respectively had the [6M] following values of the variables

Sample I	9	11	13	11	16	10	12	14
Sample II	11	13	11	14	10	8	10	-

Does the estimates of population variances differ significantly?

b) Three different machines are used for a production. On the [6M] basis of the outputs test whether the machines are equally effective using ANOVA.

	OUTPUTS	
Machine I	Machine II	Machine III
10	9	20
5	7	16
11	5	10
10	6	4

* * * * *